

PUBLIC

Code Assessment

of the Methlab

Smart Contracts

March 11th, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 13

7 Informational 17

8 Notes 19

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Methlab Team,

Thank you for trusting us to help Methlab with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Methlab according to Scope
to support you in forming an opinion on their security risks.

Methlab implements an oracle-less lending protocol to arrange fixed-term loans between individual users.
Moreover, a set of peripheral contracts is implemented to facilitate the interaction with the core protocol.

The most critical subjects covered in our audit are the safety of the funds in the lender vaults and the
loans, the liveness of the protocol, and its functional correctness. A high-security issue was uncovered
due to a dangling approval in the LoanExecutor smart contract where an attacker could steal a borrower's
funds. Another high severity issue was uncovered during the second iteration of the codebase where a
malicious borrower could grief the lender's assets. All the issues have been addressed.

The general subjects covered are access control, decentralization, documentation and specification, and
testing. The specification is very extensive and the code is very well documented. The codebase is very
well structured. The security of all aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected 3

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Methlab repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 2 January 2024 ee835c6f90b1cba8b0bb12ad7963cfff070dd9e0 Initial Version

2 15 January 2024 65a070a861cd25d5b85b67da2434990da646d5df Fixes

3 17 January 2024 09eec2eaaae7388cc929b262642b6723b0e13eed Final fixes

4 23 January 2024 3e356bbd9491dc30f95ea38bb31b79d3552d9e3a Add MultiRoute

5 11 March 2024 8e060852978aafaa62dbbf49c5889dcdb5f91 Renaming

For the solidity smart contracts, the compiler version 0.8.19 was chosen.

The following files are in scope. SHA256 hashes are provided for convenience.

4fa413eb77650e3543c1f85a250c0bf3007539faef5ebdcbf6066b7bf18ffbce packages/contracts/src/Factory.sol
790042fb431903b31932b6b4aeb5dc4b52732820e149f1aed0339c975a96909c packages/contracts/src/interfaces/IERC20Decimals.sol
e5bf1c779f1a2d89375acd1dd017edaf561057fa98e652ac80ef02138f1a5a89 packages/contracts/src/interfaces/IFactory.sol
284095b36e514b8e01d14164b6a1616f842330915f08dc972eaf3f418f622e0b packages/contracts/src/interfaces/ILendersVault.sol
662a8c636fa59069bbc1d82143dd4168c07ec74ba1ab564b65bac1c9164c8a0b packages/contracts/src/interfaces/ILoan.sol
e0de9777e77176f57b0e20a7fcb3f4ddc8eb894895aeee711e55c7b2ae4980b9 packages/contracts/src/interfaces/ILoanTaker.sol
1092b2448cb2f5f4aa1f93f9003eb0956c108855d65ad38e2297b372a2451009 packages/contracts/src/interfaces/IRegistry.sol
f0b9e400e51266a116dcf360dc50630ff634efbc7a588cedbca332d7d40b9bc0 packages/contracts/src/interfaces/IRouter.sol
4a5f7fdad7e997f5381b418265f8b2fb7e66606e35e360d383ac48c42b009916 packages/contracts/src/interfaces/ISwapper.sol
ce8f3e2d192d5c07cc1de3d9d03bc84b9166aa29ac18ab2a416c67b5ea705c51 packages/contracts/src/LendersVault.sol
1b7ff55177011227d5e37bd6b2e9e84200fc884e521d1cb0f56fb861729b0bb2 packages/contracts/src/libraries/DataTypes.sol
4f4701429a522a29d79692225138650bf2f96da62729ad90d1fcea658ed65a6d packages/contracts/src/libraries/Errors.sol
226ff1d90a5ee64b48925d86cd032d1f49bb48cf1466baefe072e26bb0a7df31 packages/contracts/src/libraries/Helper.sol
b48e3ff73e7d6e29adaf60341def1ab730f4d8abb4973876b1f87afb560ecd04 packages/contracts/src/libraries/UniswapV2Library.sol
99ccc00879bda0d16f1233fa4d195958f5070cfd1073ae8aa7d0ba2bd80a091c packages/contracts/src/Loan.sol
f471bb401e4c8de794ca610e992511e17709d71276c2c06e2182465d4e5cb247 packages/contracts/src/periphery/LoanExecutor.sol
c34e8016e492236c426b1fe0ac1e4e9713fb7d78296c238cf3a7ee85f6c04a08 packages/contracts/src/periphery/UniswapV2Swapper.sol
b53079fd25b99054dfe6aa3846c6c786d33acfe79295756084a9c3e8d0174c01 packages/contracts/src/periphery/UniswapV3Swapper.sol
de176bd5ebfad592ed960e00f195649b85e55208037dbb642bfddbb8b061e75d packages/contracts/src/periphery/UniswapV3SwapperMultiRoute.sol
c0d4bb9c7bad0adb341097d3bbac618b193cf9556d05ba341a1bcec97750871c packages/contracts/src/Registry.sol

2.1.1 Excluded from scope
Any file not included in Scope is out-of-scope. In particular, third-party libraries, including patched
versions, and deployment scripts are not in scope. The evaluation of the economic model of the
implemented protocol is beyond the scope of this review. The protocol doesn't implement any restrictions
on the configurations of the various modules such as the Lender's vault. Therefore, lenders are
responsible for configuring their vaults and borrowers are responsible for correctly choosing the lender
vaults from which they'll take loans. The owner of the protocol can set the protocol fees. Attacks
concerning a malicious owner were considered out of scope. The smart contracts are aimed to be
deployed on the Mantle L2 rollup. We assume that the semantics of the EVM opcodes are the same as
on Ethereum. Moreover, the Mantle sequencer is considered to be fully trusted and to function as
expected.

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Methlab offers an oracle-less protocol to arrange fixed-term loans between individual users.

Lenders publish intents indicating their willingness to lend some fungible asset, the principal, with another
fungible asset as collateral, with a certain strike price, interest rate, and duration. The strike price
determines the amount of principal lent per unit of collateral. Each loan has has a duration and an
expiration day. The lender cannot liquidate the borrower while the loan is ongoing: instead, the borrower
can choose to partially or fully repay the loan before it expires to receive a proportional amount of their
collateral. If they choose not to, the lender can seize the remaining collateral after the expiration date. As
a result, the loan replicates an American option, allowing the borrower to buy back the collateral at the
strike price before expiry.

2.2.1 Factory
This singleton contract deploys LendersVault and Loan contracts using immutable proxies. It is
responsible for initializing the new contracts and adding them to its Registry. Anyone can deploy a vault,
but only vaults can deploy loans.

2.2.2 Registry
This singleton contract maintains a list of all valid LendersVault and Loan instances. It only allows its
Factory to register contracts.

2.2.3 LendersVault
This contract can be deployed as an immutable proxy. It is owned by a lender and allows borrowers to
take loans with that lender.

To determine what loans are possible, the owner must create intents, described later, and intent
collections.

Intent Collections:

They specify a collateral and borrowable token, the minimum and maximum amounts for a single loan, an
expiration timestamp for the collection, and an isEnabled flag which determines whether new loans can
be issued using this collection. Once expired, no further loans can be issued through a collection, but
existing loans are not affected. It is possible to change the expiration date
(extendIntentCollection()) of a collection or to toggle isEnabled
(setIntentCollectionStatus()) . The new expiration date is required to be in the future. The rest
of the fields are immutable.

Intents:

Intents specify a strike price, interest rate, and duration. They belong to exactly one intent collection. An
intent is created together with its collection by calling createIntentCollection() and is immutable.
If an intent belongs to a collection that is neither expired nor disabled, any borrower can call
createLoan() referencing it.

The LendersVault exposes the following interface:

• createLoan(): It requires a collection id, intent id, and a borrow amount. A user has the option
to directly convert the principal tokens borrowed to collateral tokens. For that case, callback data
for sourceCollateral() can also be provided. createLoan() will compute

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

the principal amount as the collateral amount multiplied by the strike price, ensure that it is within
the collection bounds, and transfer the principal amount in borrow tokens to the caller. It then
deploys a Loan instance and sets the borrower to the caller, the borrowed amount to the
principal amount augmented with the interest, and the expiration to the current timestamp plus
the collection duration. Then, if callback data was provided, it calls back the caller's
sourceCollateral() method passing the callback data. Finally, it tries to transfer the
collateral from the caller, reverting if this fails.

• withdraw(): In order to provide principal, the owner of a vault must manually transfer tokens
into the contract. The withdraw() function allows the owner to transfer any tokens held by the
contract back to themselves.

• set[Un]pauseGuardian(): The owner can designate a new [un]pause guardian address.

• [un]pause(): The owner or the designated guardian can [un]pause the contract, disallowing
the creation of new loans.

2.2.4 Loan
This contract can be deployed as an immutable proxy. It sits between a lender and a borrower and holds
the collateral.

The Loan contract exposes the following interface:

• repay() As long as the loan hasn't expired, anyone can call the repay() function to reduce
the loan amount. It requires an amount in the principal token and some optional callback data. If
the amount is nonzero and less than or equal to the remaining debt amount, the accounting is
updated, then the released amount of the collateral is transferred to the borrower. Then, if
callback data was provided, the sourcePrincipal() is called on the caller, passing the data.
The callback allows to convert of part of the borrower's collateral into principal. Finally, the
amount to be repaid is transferred from the caller.

• transfer(): The borrower can transfer() the loan to a different address. The collateral is
always refunded to the current borrower's address.

• seizeCollateral(): After the loan is expired, the seizeCollateral() function can be
called by anyone. The function refunds the lender vault address with the remaining collateral
based on internal accounting.

2.2.5 LoanExecutor
This periphery contract is a singleton. It allows users to take and manage trading positions using loans. It
does not hold tokens but receives ERC-20 allowance from users.

The LoanExecutor exposes the following interface:

• executeLoans(): The function takes an array of loan parameter elements. Each element
specifies a lender's vault, an amount of collateral to swap, a lender intent, an amount of
collateral to supply, and optionally the address of a swapper contract and some callback data.
For each element, the contract will consult the lender's intent to discover the principal and
collateral tokens. Then it will transfer the difference between the amount of collateral to supply
and the amount of collateral to swap from the user. Then it will give allowance to the vault
contract for the collateral and call createLoan(). If a swap is needed, a
sourceCollateral() callback will occur, allowing the LoanExecutor to swap some of the
principal received to collateral using the specified swapper. Finally, the function transfers the
loan and any principal or collateral amount left to the caller and proceeds with the next element.

• repayLoan() The function takes the address of a loan, the address of a swapper contract, a
repayment amount, and some callback data for the swapper. It queries the loan contract to

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

discover the tokens involved. Then, it gives allowance in the borrow token to the loan and calls
repay(). This results in a sourcePrincipal() callback where the freed collateral is
transferred from the borrower and swapped into the amount of borrow token required for
repayment. Finally, the remaining collateral is given back to the sender.

2.2.6 UniswapV2Swapper
This contract is an adapter for LoanExecutor to trade on Uniswap version 2. It contains two functions,
swapIn(), which swaps an amount of input tokens already transferred to the contract and routes the
resulting funds back to the caller, and swapOut(), which swaps as few input tokens as possible to
obtain a specified amount of output tokens and transfers the remainder back to the caller. Both functions
use price information passed by the frontend to prevent sandwich attacks.

2.2.7 UniswapV3Swapper
This contract is an adapter for LoanExecutor to trade on Uniswap version 3. Its semantics are the same
as UniswapV2Swapper which we refer to.

2.2.8 Trust model
The singleton contracts in the protocol are immutable and fully permissionless.

Once a LendersVault is deployed, its owner is in control of all assets deposited therein. It should ensure
that any seizable collateral is seized promptly to minimize opportunity costs. If an intent is enabled,
anyone can use it to borrow. The owner can designate other addresses that it lightly trusts as pause and
unpause guardians. They are only able to call the pause() and unpause() functions respectively.
Ownership cannot be transferred.

Once a Loan is deployed, anyone can call repay(), but the borrower will receive the collateral. Anyone
can call seizeCollateral(), but the collateral will be transferred to the lender's vault. The borrower is
incentivized to ensure repayment happens if it is profitable to them. They have no special privileges on
the contract besides transferring ownership.

2.2.9 Changes in Version 2

• The specification of extendIntentCollection() has been changed. It is allowed to shrink the
duration of an intent collection as long as the expiry is set to the future.

• The meaning of interest rate has been changed. Originally, the interest rate was the percentage of
the borrowed amount that should be returned together with the borrowed amount. For a loan of
1000$ with 10% interest an extra 100$ should be returned to the system by the borrower. In V2, is
the percentage of the loan the borrower doesn't actually receive. This means, ignoring taker fees, for
a loan of 1000$ with 10% interest, the borrower will only receive 900$ but they should return 1000$
in the end.

• A fee system was introduced. Both makers and takers should pay a fee (makerFee, takerFee).
The fees are determined arbitrarily by the owner of the Registry contract. More specifically:

• takerFee: It's calculated as a percentage of the premium the borrower needs to pay which
is added on top of the premium. The fee is initially deducted from the lender's vault balance
but it is expected to be returned if it makes sense for the borrower to repay the loan.

• makerFee: It's calculated as a percentage of the premium. It's withdrawn from the lender's
vault.

• The lenders are expected to take into account the fee specification to correctly specify reasonable
strike prices.

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.10 Changes in Version 4
Version 4In , UniswapV3SwapperMultiRoute has been added to support multi-hop swaps.

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedIncorrect Seizable Amount Calculation

• Code CorrectedBorrower Profits Can Be Stolen

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected Specification ChangedExpiry Extension

• Code CorrectedExtending and Enabling Collection With Id 0

• Code CorrectedPreview Repay

Informational Findings 1

• Code CorrectedDead Code

6.1 Incorrect Seizable Amount Calculation
Correctness High Version 2 Code Corrected

CS-METHLAB-008

In Loan.seizeCollateral(), the seized collateral amount is computed like so:

(, uint256 reclaimableAmt) = previewRepay(loanData.repaidAmt);
uint256 seizeableAmt = loanData.collAmt - reclaimableAmt;

In version 2, the Loan.previewRepay() functions is as follows:

function previewRepay(uint256 repayAmt) public view returns (uint256, uint256) {
 uint256 remainingAmt = loanData.borrowAmt - loanData.repaidAmt;
 if (repayAmt > remainingAmt) {
 repayAmt = remainingAmt;
 }
 return (repayAmt, (loanData.collAmt * repayAmt) / loanData.borrowAmt);
}

Because of the repayAmt > remainingAmt check, seizeCollateral ends up overestimating the
available collateral to seize if more than half of the loan has been repaid, thereby causing the seizure to
fail. This essentially griefs the lender via denial of service.

For instance, assume the following parameters:

loanData.borrowAmt = 1000
loanData.repaidAmt = 600

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Then, the function will compute:

repayAmt = loanData.repayAmt == 600
remainingAmt = loanData.borrowAmt - loanData.repaidAmt == 400
(repayAmt > remainingAmt) == true
repayAmt = remainingAmt == 400
reclaimableAmt = (loanData.collAmt * repayAmt) / loanData.borrowAmt = 40% of loanData.collAmt
seizeableAmt = loanData.collAmt - reclaimableAmt = 60% of loanData.collAmt

However, the correct value for seizableAmt would be 40% of the collateral.

Code corrected:

The collateral is now seized simply transferring the balance in collateral of the loan contract back to the
lender's vault.

6.2 Borrower Profits Can Be Stolen
Security High Version 1 Code Corrected

CS-METHLAB-005

Methlab implements the LoanExecutor periphery contract to facilitate loan execution and repayment.
LoanExecutor implements the sourcePrincipal fallback function which can be used to convert
some of the collateral amount the borrower holds into principal so it can be repaid for the loan. For that, a
borrower must give a token allowance to an instance of LoanExecutor. If the borrower holds an option
that is in profit, then any attacker can repay their loan through the executor and pocket their profit.

Let us consider the following scenario:

1. A lender offers loans with:

• Collateral: mETH

• Principal: mUSD

• Strike price: 1500 mUSD/mETH

• Market price: 2000 mUSD/mETH

• Interest rate: 1% (for 30 days)

• Duration: 30 days

2. A borrower/victim V creates a loan by offering 1 ETH as collateral, receiving 1500 mUSD. The
borrower must repay 1515 mUSD to receive back the collateral.

3. V being short on mUSD converts it to mETH at market price receiving 0.75 mETH.

4. After some time the mETH price goes up to 4000 mUSD/mETH.

5. V decides to repay their loan using the LoanExecutor (LE) and they give an approval to it.

6. An attacker A sees the approval and calls LE.repayLoan() before V does so. The attacker
tries to repay the full loan i.e., repayAmt is 1515 mUSD.

7. repayLoan makes a call to Loan.repay() which eventually calls
LE.sourcePrincipal().

8. LE withdraws 1 ETH from the borrower. Since the price of mETH is now 4000, only a part of the
1 will be used to obtain the needed 1515 mUSD. The rest of the mETH is returned to the LE.

9. At the end of the call the LE returns the remaining mETH to the msg.sender.

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

/// @dev transfer any remaining collToken back to borrower
transferRemaining(collToken, msg.sender);

However, the assets are not owned by the msg.sender who's the attacker and not the borrower.

Moreover, when repaying, the executor could sell the collateral at the strike price or better. The attacker
can force the executor to trade with them at the strike price by passing a custom swapper contract, or by
manipulating Uniswap with sandwich calls. If the collateral has increased in value, this is profitable at the
expense of the borrower.

Code corrected:

A loan can only be repaid by the borrower. Hence, an attacker cannot take advantage of dangling
approvals.

6.3 Expiry Extension
Design Low Version 1 Code Corrected Specification Changed

CS-METHLAB-006

Owners of a vault can call extendIntentCollection() to extend the expiration date of a collection.
However, the expiration date can be set in timestamp earlier than what it currently is, essentially
shrinking the lifetime of the collection.

Code corrected:

The new expiration date must be in the future.

Specification changed:

The specification delivered to us by Methlab now allows it to be earlier than the previously set expiration
date.

6.4 Extending and Enabling Collection With Id 0
Design Low Version 1 Code Corrected

CS-METHLAB-007

A new collection is assigned to an id. This id is strictly greater than 0 meaning there's no collection with id
0. However, the owner of a lender's vault can successfully call extendIntentCollection() and
setCollectionStatus() for the collection with id 0.

Code corrected:

The aforementioned methods will revert for collections with id 0.

6.5 Preview Repay
Design Low Version 1 Code Corrected

CS-METHLAB-009

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Loan.previewRepay() is used to preview how much collateral will be repaid for a given principal
amount (repayAmt). However, there's no check that the repayAmt doesn't exceed the total borrowed
amount. Therefore a caller of this function (EOA or smart contract) could accidentally assume that they
can withdraw more collateral than they are supposed to.

Code corrected:

The previewRepay() function returns two values: 1) the amount of the collateral to be released for a
certain amount principal 2) the capped amount of the principal to be repaid.

6.6 Dead Code
Informational Version 1 Code Corrected

CS-METHLAB-004

The swapIn() function in the UniswapV2Swapper and UniswapV3Swapper contracts is never used
within the repo.

Code corrected:

Dead code was removed

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimizations
Informational Version 1

CS-METHLAB-001

We report a non-exhaustive list of potential gas optimizations.

1. In Factory, the existence of a vault or loan is registered with a boolean. Since solidity performs
additional masking operations when storing booleans, it would be more efficient to use a uint256.

2. In periphery contracts, safeIncrease- and decreaseAllowance() are used to set the
approval to a specific value and later fully revoke it. However, the alternatives forceApprove()
and safeApprove() could be used to increase clarity.

3. In LoanExecutor, the function createLoan() could be public, making creating a single loan
slightly cheaper.

4. block.timestamp+1 is used as the deadline for UniswapV2 and UniswapV3 routers, which is
unnecessary and can be changed to block.timestamp.

7.2 No Sanity Checks
Informational Version 1

CS-METHLAB-002

LendersVault.createIntentCollection doesn't enforce any sanity checks on some of the input
parameters. For example:

• minSingleLoanAmt is not checked to be less than maxSingleLoanAmt

• borrowToken is not checked to be different from collToken

These sanity checks do not affect the security of the protocol just the user experience for the lenders
since badly parameterized intents will not result in loans.

UniswapV3SwapperMultiRouter does not ensure that path[0] == tokenIn and
path[n] == tokenOut. In case the output token encoded in the path is not as expected, a call may
still succeed if there is sufficient tokenOut in LoanExecutor (e.g. via a donation). And the erroneous
output tokens will be locked. These tokens can be unlocked via another loan through the LoanExecutor
if this loan handles these tokens.

7.3 Redundant Events
Informational Version 1

CS-METHLAB-003

Some admin functions in LendersVault emit redundant events even if the new value is the same as
the old one. These functions are:

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

• extendIntentCollection()

• setIntentCollectionStatus()

• set[Un]pauseGuardian()

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Interest Is Not Accrued Over Time
Note Version 1

Typically, when the term interest is used, it is understood that if a lender repays early, they will be
charged less interest. In Methlab, this is not the case at the scale of a single loan, since the borrower is
always charged the full interest amount regardless of when they repay. Lenders should be aware that
borrowers are not directly incentivized to repay early.

8.2 Potential Read-Only Reentrancy
Note Version 1

A user can repay a loan by calling Loan.repay(). During the call, they can optionally make a call back
to the msg.sender, should non-empty data have been passed. Note that at the point of the call, the state
of the Loan has not been fully updated as collateral has been transferred to the borrower but no principal
has been transferred from the msg.sender. An external contract assuming that the Loan contract is
always in a consistent state could accidentally read the balances and malfunction.

Version 2In , a public function reentrancyGuardEntered() function has been added to allow other
contracts to query the state of the Loan's reentrancy guard.

8.3 Properly Setting the Strike Price
Note Version 1

An intent specifies a specific strike price for a loan. Of course, an intent configuration can become
non-profitable for the lender if the market price of either the collateral or the principal changes. In that
case, the lender can disable the intent. Lenders should set the strike price in such a way that they have
sufficient time to react to rapid price changes in the market.

8.4 Protocol Fees Can Be Set Arbitrarily
Note Version 2

The administrator of the protocol controls the quantity of taker and maker fees charged by the protocol. A
call to the setter methods can affect all existing loan intents immediately, and both fees can be set to
100% of the loan premium. Lenders and borrowers should make sure they trust the administrator
address.

8.5 Rounding Errors on Repayment
Note Version 1

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

When repaying a loan, previewRepay calculates the amount to be reclaimed to the user based on the
ratio of the repaid amount over the total borrowed amount. This division can introduce some rounding
errors. These errors are in favor of the lender who can, in theory, seize all the remaining balance of the
collateral after the loan has expired. A theoretical attack could be the following: A malicious lender
gradually repays very tiny amounts of the loan. As the collateral to be released is rounded down to zero
and the repaid amount is sent back to the lender, the attacker only loses on gas fees. If the loan is repaid,
the borrower cannot claim the collateral. When the loan expires the lender can seize the collateral.

8.6 Unsupported ERC-20 Tokens
Note Version 1

The system doesn't apply any restrictions on what tokens are used as collateral and principal tokens.
However, it is important to emphasize that tokens with rebases should not be used as collateral.
Moreover, tokens with negative rebases or fees on transfer should not be used as either collateral or
principal. Lenders should be mindful of the tokens they choose to allow in their intents.

A token address with no contract code should also not be used as collateral since safeTransferFrom()
calls will always succeed. As a result, the borrow token can be drained.

Methlab - Methlab - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Factory
	2.2.2 Registry
	2.2.3 LendersVault
	2.2.4 Loan
	2.2.5 LoanExecutor
	2.2.6 UniswapV2Swapper
	2.2.7 UniswapV3Swapper
	2.2.8 Trust model
	2.2.9 Changes in Version 2
	2.2.10 Changes in Version 4

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Incorrect Seizable Amount Calculation
	6.2 Borrower Profits Can Be Stolen
	6.3 Expiry Extension
	6.4 Extending and Enabling Collection With Id 0
	6.5 Preview Repay
	6.6 Dead Code

	7 Informational
	7.1 Gas Optimizations
	7.2 No Sanity Checks
	7.3 Redundant Events

	8 Notes
	8.1 Interest Is Not Accrued Over Time
	8.2 Potential Read-Only Reentrancy
	8.3 Properly Setting the Strike Price
	8.4 Protocol Fees Can Be Set Arbitrarily
	8.5 Rounding Errors on Repayment
	8.6 Unsupported ERC-20 Tokens

