

PUBLIC

Code Assessment

of the V3 Whitelister

Smart Contracts

April 03, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Informational 10

7 Notes 12

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear MethLab team,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of V3 Whitelister according to
Scope to support you in forming an opinion on their security risks.

MethLab implements a modified version of Uniswap V3, which introduces a whitelist for LP token minting.

The most critical subjects covered in our audit are functional correctness and access control. Security
regarding both subjects is high.

A general subject covered was Event Handling. Event handling is improvable, as the Whitelister does not
emit events for some owner operations. See Missing Events for Owner Operations.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the V3 Whitelister repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V3 Whitelister

V Date Commit Hash Note

1 28 Feb 2024 8c228525f262314fc248857424d0e404a99fa6bc Initial Version

V3 Core Whitelister

V Date Commit Hash Note

1 28 Feb 2024 04946adf494cdd7c605a4d11c39db7d4d7eb5d32 Initial Version

For the solidity smart contracts, UniswapV3Pool uses compiler version 0.7.6 and WhitelisterV3 uses
0.8.19.

The following files were in scope of this review:

• WhitelisterV3.sol

• UniswapV3Pool.sol (only modifications)

Note that for the UniswapV3Pool, only the modifications made to the original UniswapV3Pool were
reviewed, assuming that the original contract was correct.

2.1.1 Excluded from scope
All other files, including all files that were taken from Uniswap unmodified.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MethLab offers V3 Whitelister, a fork of Uniswap V3 that adds a whitelist for Liquidity providers. Only
whitelisted addresses can deposit liquidity. The whitelist can be toggled on or off per pool and is enabled
for all pools by default.

2.2.1 WhitelisterV3
The WhitelisterV3 is a contract that allows the owner to add and remove addresses from a whitelist.
There is a separate whitelist for every pool.

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

The isAllowed() view function is called by a UniswapV3Pool and returns true when the LP passed in
data is allowed to mint and the recipient of the LP tokens is the NonFungiblePosManager.

The owner role can toggle the whitelist on or off for each pool (setPoolWhitelist()), or set the
ENABLED flag to false to disable the whitelist for all pools (setContractState()). When ENABLED is
set to false, the system will behave exactly like Uniswap V3 without modifications. The owner can add
addresses to the whitelist of a pool by calling
setLPWhitelist(address _pool, address _lp, bool _status).

When the whitelist is enabled for a pool, it is enforced that all calls to mint() in UniswapV3Pool must
specify the exact NonFungiblePosManager as recipient that is set in WhitelisterV3. This means the
whitelisted LPs must use this PositionManager, and cannot use a different one.

The WhitelisterV3 is initialized with a Factory and a NonFungiblePosManager once, and they cannot
be changed later.

The ownership of the WhitelisterV3 can be transferred to another address by calling
transferOwnership(). The ownership can be renounced by calling renounceOwnership(), but
only if the ENABLED flag is set to false. This can be used to assure users that the whitelists will stay
disabled forever, once they have been disabled.

2.2.2 UniswapV3Pool
The UniswapV3Pool has been modified from Uniswap with a single code change:

 function mint(
 [...]
) external override lock returns (uint256 amount0, uint256 amount1) {
 require(amount > 0);

 // check if the LP is whitelisted or not
 require(IWhitelister(whitelister).isAllowed(recipient, data), '!W');

The mint() function now calls the WhitelisterV3 (a constant address) and checks the return value of
isAllowed(). If the LP is not whitelisted, the function will revert. This ensures that only whitelisted LPs
can mint.

All other contracts are taken 1-to-1 from Uniswap V3 and are not modified.

2.2.3 Trust model
The owner of the WhitelisterV3 can modify the whitelist and toggle it on or off for each pool. In the worst
case, it could allow all addresses to mint to a pool that should be restricted, or restrict addresses from
minting that should be allowed.

The addresses on the whitelist can mint LP tokens using the NonFungiblePositionManager. These
positions can then be transferred to other addresses, even if they are not on the whitelist. The whitelisted
addresses are assumed to only transfer positions to addresses that should be allowed to receive them.
The contract does not restrict this.

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Floating Solc and Dependency Versions
Informational Version 1 Acknowledged

CS-DFWL-001

MethLab uses a floating pragma solidity ^0.8.19, and the solc version is not specified in the configuration
file (foundry.toml). Contracts should be deployed with the same compiler version and flags that have
been used during testing and audit. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

In addition, the dependency (openzeppelin contracts) used is not fixed to a specific commit. With new
versions being pushed to the dependency registry, the compiled smart contracts can change. This may
lead to incompatibilities with older compiled contracts. If the imported and parent contracts change the
storage slot order or change the parameter order, the child contracts might have different storage slots or
different interfaces due to inheritance.

Both types of floating versions can lead to issues when trying to recreate the exact bytecode that was
deployed.

6.2 Hardcoded Address
Informational Version 1 Acknowledged

CS-DFWL-002

The address of the WhitelisterV3 is hardcoded in the modified UniswapV3Pool contract.

It should be ensured that the address is set to the correct address before deployment.

In particular, it should be noted that the address may differ if the contracts are deployed to a different
chain.

6.3 Missing Events for Owner Operations
Informational Version 1 Acknowledged

CS-DFWL-003

No events will be emitted in the following owner operations:

function initializeV3Address
function setContractState
function setPoolWhitelist
function setLPWhitelist

Events can notify off-chain observers of important state changes on the contract.

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6.4 Users Can Donate to
NonFungiblePosManager by Interacting With
UniswapV3 Pool Directly
Informational Version 1 Acknowledged

CS-DFWL-004

The WhitelisterV3 will ensure that the recipient can only be the NonFungiblePosManager, and that lps
are whitelisted.

require(_recipient == NonFungiblePosManager, "Invalid Callee");
(, address lp) = abi.decode(_data, (PoolKey, address));
if (!isLPWhitelisted[msg.sender][lp]) return false;

However, a user can circumvent the whitelist to deposit into any ticks they want, by directly calling
mint() on the UniswapV3 pool with NonFungiblePosManager as the recipient and passing any
whitelisted address as lp. This is a donation to the NonFungiblePosManager. As the
NonFungiblePosManager is not aware of the donation, the donated funds will be locked.

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 LP Tokens Can Be Transferred
Note Version 1

The WhitelisterV3 ensures that only whitelisted addresses can mint LP tokens. However, once LP tokens
have been minted using the NonFungiblePositionManager, they can also be transferred to other
addresses. These transfers are unrestricted.

Any LP that is on the whitelist can mint and then transfer LP tokens to any address, even if that address
is not on the whitelist.

Also note that if an LP was on the whitelist once, but is removed, they will still own the LP tokens they
minted while they were whitelisted. Only future mints will be restricted in this case.

MethLab - V3 Whitelister - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 WhitelisterV3
	2.2.2 UniswapV3Pool
	2.2.3 Trust model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Informational
	6.1 Floating Solc and Dependency Versions
	6.2 Hardcoded Address
	6.3 Missing Events for Owner Operations
	6.4 Users Can Donate to NonFungiblePosManager by Interacting With UniswapV3 Pool Directly

	7 Notes
	7.1 LP Tokens Can Be Transferred

