

PUBLIC

Code Assessment

of the MethLab DLV

Smart Contracts

July 5, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 13

7 Informational 16

8 Notes 20

MethLab - DLV - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear MethLab team,

Thank you for trusting us to help MethLab with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of DLV according to Scope to
support you in forming an opinion on their security risks.

MethLab implements the second version fo their lending protocol. The most important change from the
previous version is the introduction of strategies which can automatically determine specific parameters,
e.g., the strike price of a loan to-be-issued.

The most critical subjects covered in our audit are security of the funds in the vaults and the loans,
potential price manipulations, and the functional correctness of the protocol. A medium severity issue
was uncovered, where the owner of a vault can modify loan parameters resulting in loan issuance of
unexpected specification for a borrower. Most of the issues have been addressed some low severity
issues remain open.

The general subjects covered are access control, gas-efficiency and, testing. The security of all
aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

MethLab - DLV - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 6

• Code Corrected 4

• No Response 2

MethLab - DLV - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the DLV repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 12 June 2024 bf96c9cd5f447bc879c277bbfe9fdc08ccaffbcc Initial Version

2 21 June 2024 d1f2b188612e5e5b41b9b3c8ad02d1cfa48f1dcf Intermediate fixes

3 2 July 2024 ac86f3153178b58a5f66c64850c44f4703ac5ec7 Second round of fixes

4 3 July 2024 29cca0cd5891859385304414c9c88582d62fe53a Final version

For the solidity smart contracts, the compiler version 0.8.19 was chosen.

The files in-scope are the following packages/contracts/src/:

• V2/:

• DelegatedLenderVault.sol

• LoanV2.sol

• PythWrapper.sol

• RegistryV2.sol

• Strategy.sol

• PythUtilsExtra.sol

• periphery/LoanCreator.sol

• periphery/LoanRepayer.sol

• Loan.sol

• periphery/UniswapV3SwapperMultiRoute.sol

SHA256 hashes are provided for convenience.

15ec35792e647e0499645f82c0f955f116abdc1f51717a5210c2df7f50b11759 V2/DelegatedLenderVault.sol
0d11cabdcae44e4b19c6ed12507ea8287bf2048583057c4a131de1618c770b76 V2/LoanV2.sol
9f96d7690b7c36527b6b436e2cbc5f2d273dc4689c9f0b82d192c8248288c7c0 V2/PythWrapper.sol
6a070963f3cf1dc7e2ab89f70e734dcfea96c3bfc4ebfb940224d57832eb98ea V2/RegistryV2.sol
11e9ed875c584077624511fa92a2324c6e618acc3347a0ea39e27e6ad6c15a33 V2/Strategy.sol
5b17987c5f9cb10295a00ab7c9a1d029da77e68ca8b815beec5599196c2ce905 V2/PythUtilsExtra.sol
e9de31467d438e9d90645ea27d760f5cbd2309930d16b13dfa687339f7dc62c1 V2/periphery/LoanCreator.sol
eaa4d1329674d3e951243493259da44241b0ae1f15c3ef346112e1d9e69c51e8 V2/periphery/LoanRepayer.sol
dba721d9b3e8c683983a83f06f119b2d4885cb50e9386764ad12dc250d5e392b Loan.sol
8fd6c59c446464df13a6046210f11e5f0d2f49b150e1bdcb575d3d5b2eb2ba68 periphery/UniswapV3SwapperMultiRoute.sol

MethLab - DLV - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope
Any file not included in Scope is out-of-scope. In particular, third-party libraries, including patched
versions, and deployment scripts are not in scope. The evaluation of the economic model of the
implemented protocol is beyond the scope of this review. The protocol doesn't implement any restrictions
on the configurations of the various modules such as the Lender's vault. Therefore, lenders are
responsible for configuring their vaults and borrowers are responsible for correctly choosing the lender
vaults from which they'll take loans. The owner of the protocol can set the protocol fees. Attacks
concerning a malicious owner were considered out of scope. The smart contracts are aimed to be
deployed on the Mantle L2 rollup. We assume that the semantics of the EVM opcodes are the same as
on Ethereum. Moreover, the Mantle sequencer is considered to be fully trusted and to function as
expected. Moreover, the protocol interacts with a UniswapV3-like contract. We assume that the
implementation of the contract and the contracts it interacts with are identical to UniswapV3. As this
second version of the protocol builds on top of the first one, all the relevant issues and concerns
mentioned in the previous report are also valid for this one.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MethLab offers the second version (V2) of a lending protocol for loans with fixed interest, fixed duration,
and fixed repayment prices i.e., borrowers can repay for the price that originally was determined during
the opening of a position. Funds are not pooled. Instead, each lender owns their pool from which users
can borrow money at some pre-defined terms.

Each Vault (lending pool) belongs to one lender and can issue loans of some pre-specified configurations
(intents). In V2, the vaults (DelegatedLenderVault) define a single intent, therefore, they allow for
loan issuance in one borrowed token for one specific collateral token. The lender can define the rest of
the parameters of the loan using a strategy. In the current scope, the implemented strategy defines a
fixed loan duration, a fixed interest rate, and a fixed strike price that is calculated from the current spot
price of the collateral token and some static factor. During the loan duration, the principal and interest can
be repaid in any amount at any time returning the corresponding share of collateral as per the strike
price.

After a loan has ended, repayments are no longer possible and any remaining collateral can be seized by
the lender. The protocol does not contain a liquidation mechanism. Borrowers can choose to sell their
borrowed tokens to go short for the full duration of the loan without fears of being liquidated while lenders
are always long on the borrowed token.

2.2.1 RegistryV2
RegistryV2 is a simple registry contract that allows to deploy clones of DelegatedLenderVault and
Loan. A vault can be deployed by anyone, loans are deployed from registered vaults. Additionally, the
protocol governance can set maker (lender) and taker (borrower) fees that are charged during loan
creation.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.2 DelegatedLenderVault
Each lender can call RegistryV2.deployVault() to create a Vault for a specific collateral / borrow
token pair using a user-supplied strategy contract. The lender can then set an expiry date for the vault
using setCollectionExpiry() after which no new loans can be created. With
setMinMaxLoanAmt(), an interval for the amounts a user can borrow can be set. Additionally, the
lender can enable /disable the vault with setCollectionStatus() or with the pause() / unpause()
functionality.

A lender can deposit() any amount of to-borrowed tokens which become instantly available to be
loaned out. They can also withdraw() the borrow token, as well as any other token, from the contract.

Borrowers can call createLoan() to deploy a new Loan contract. Collateral is supplied on loan
creation and stored in the Loan contract until the loan is repaid or the collateral seized.

2.2.3 Loan
A Loan is deployed for each individual loan between a lender and a borrower. The borrower can
repay() any amount (up until the total owed) and receive the respective amount of collateral back at
any time. Once the end of the loan duration has been reached, anyone can call seizeCollateral() to
transfer the remaining collateral back to the lender's vault.

Borrowers can also transfer the debt to another address in case they are not capable to repay anymore
or want to sell their debt.

2.2.4 Strategy
In general a strategy is a contract implementing an arbitrary logic returns an intent. Intents are a tuple
consisting of information about an offered loan:

• The strike price.

• The interest rate.

• The duration.

The default implementation of a strategy provided specifies the function setStrategy() which allows
the owner of the contract to set these three values. The strike price, however, is not set directly. The
function rather allows the owner to set a certain adjustmentFactor (between 0.1% and 95%) that is
applied to the spot price at the time of the creation of any given loan. The factor increases the required
collateral in comparison to the lent amounts and therefore sets a maximum loss for the borrower and a
maximum gain for the lender:

1. If the borrowed token loses market value, the borrower is always incentivized to repay the loan,
making the lender exposed to a normal long position in the borrow token.

2. If the borrow token gains market value, the borrower is only incentivized to repay the loan up until
the point the borrow position value is equal to the collateral value. If the borrower goes short (by
selling the borrow token for the collateral token on the open market), their losses are capped at this
point. If they stayed longer, the borrowed tokens would be more profitable than the collateral
position. Due to this, the lender's profits are capped as they won't receive the borrowed token back,
not profiting from its further gains.

2.2.5 PythWrapper
Strategy.getIntentData() creates the strike price for a loan by multiplying the current spot price
for a given pair with the adjustmentFactor. To reliably retrieve the current spot price, the
PythWrapper contract is used as an oracle.

It utilizes the pull-based Pyth oracle service that allows any user to publish very recent pricing information
on-chain themselves. Before calling a function that fetches price data from Pyth, users must call the

MethLab - DLV - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

function forcePythPriceUpdate() (or updatePriceFeeds() directly on the Pyth contract) for both
assets. The getPrice() function then uses the prices of the two updated feeds to generate a price and
validate that the price is not stale and that the confidence of the providers does not reach a given
threshold.

2.2.6 LoanCreator
Borrowers who want to go short instantly can use the LoanCreator peripheral contract. Calling
createLoan() allows the user to define a swap on a third-party exchange that is performed with the
received borrow tokens. When loans are created, the borrow tokens are first sent to the msg.sender
after which a special function sourceCollateral() is called on the msg.sender. LoanCreator
performs a swap in this callback to partially pay for the required collateral.

Users using this contract only pay the premium and extra collateral (according to the
adjustmentFactor) to get access to a loan that gives them the option to later convert the tokens at the
strike price.

2.2.7 LoanRepayer
If borrowers went short on a loan and want to repay without holding the extra borrow tokens in advance,
they can use the LoanRepayer``peripheral to simply repay with the collateral toke
ns by converting them on a third-party exchange. The process follows the same
 scheme as the ``LoanCreator.

2.2.8 Changes in version 2
Version 2The following changes have been made in of the code:

1. Expiry, min/max loan amounts and the collection status have been removed from
DelegatedLenderVault.

2. Strategies are now whitelisted in RegistryV2. Vaults can no longer be deployed with arbitrary
strategies.

2.2.9 Changes in version 3
Version 3The following changes have been made in of the code:

1. Strategies are now controlled by the admin and a special strategist role. Both roles are supposed to
be timelocked.

2. The implementation of loans deployed by a specific vault can now be upgraded by the owner of the
vault via upgradeLoanImplementation().

3. The implementation of vaults deployed by the registry as well as the default implementation of
loans for the new vaults can now be changed by the admin of the registry.

4. In RegistryV2, the taker and maker fees and the strategy status are set by the manager role.
Moreover, the manager can withdraw the fees.

5. A strategy can be (un)paused by the stragist role or the (un)pause guardian.

2.2.10 Roles & Trust Model
Governance can transfer any tokens sent to the RegistryV2 contract. In addition, governance can
change maker and taker fees at any time.

PythWrapper allows the owner to change staleness and confidence thresholds at any time.

Strategy allows the owner to update loan and operational parameters at any time.

Vaults can be deployed with arbitrary Strategy contracts (and therefore also arbitrary Oracle contracts).

MethLab - DLV - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Contracts are generally immutable except PythWrapper.

Version 3In the following roles were introduced:

• The RegistryV2 admin: can modify the access control of the contract, and upgrade the default
implementations for the vaults and the loans, and whitelist loan implementations and loan upgrades.
It is controlled by a long timelock (24-28h).

• The RegistryV2 manager: can modify the fees, set the strategy status, and withdraw fees. It is
controlled by a short timelock.

The two roles are set initially to the same address.

• The Strategy strategist: It is controlled by a 3rd party. It can modify the loan duration, interest rate
adjustment factor, and other operational parameters as well as pause and unpause a strategy. It is
controlled by a long timelock (24-28h).

• The Strategy admin: can modify the access control of the contract, set the oracle used by the
strategy, or perform any of the operations of a strategist. It is controlled by a medium timelock (12
-24h)

• The Strategy pause/(un)pause guardians: can (un)pause a strategy. It is controlled by a short
timelock.

All the roles are fully trusted.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Few Decimals for the Denomination Asset

• Sending Arbitrary ETH in forcePythPriceUpdate

5.1 Few Decimals for the Denomination Asset
Correctness Low Version 1

CS-MLV2-001

PythWrapper.getPriceInDenom() calculates the relative price between collateral and borrowed
asset, i.e., it calculates the collateral price denominated in the borrowed asset. The price uses the
decimals of the borrowed asset. Let's assume that the denomination asset (for example GUSD) has only
two decimals. Moreover, let's assume that the collateral asset is worth very little compared to the
borrowed asset. Due to rounding errors, the relative price will be reported as 0.

5.2 Sending Arbitrary ETH in
forcePythPriceUpdate
Design Low Version 1

CS-MLV2-002

A user can update the Pyth price feed by calling PythWrapper.forcePythPriceUpdate(). The call
forwards the full amount of ETH to the Pyth oracle. However, Pyth exposes an updateFee() view
function that informs the caller on the required native amount needed. It is best practice to calculate the
fee in the same transaction as the fees could change from transaction creation until its execution.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedWrong Implementation

• Code CorrectedLoan Creation Frontrunning

Low -Severity Findings 4

• Code CorrectedApproval Abuse With Reentrant Tokens

• Code CorrectedMax Loan Amounts Are Not Enforceable

• Code CorrectedMissing Check

• Code CorrectedVault Pausing Functionality

6.1 Wrong Implementation
Correctness Medium Version 3 Code Corrected

CS-MLV2-016

When calling RegistryV2.deployLoan(), the caller has the opportunity to specify the impl address
of the implementation of the loan they want to deploy. However, the loan is created as a clone of
loanImpl. In other words, impl address is never used.

Code corrected:

A clone of impl is now created.

6.2 Loan Creation Frontrunning
Design Medium Version 1 Code Corrected

CS-MLV2-017

Lenders create their vaults by passing an arbitrary strategy contract to RegistryV2.deployVault().
The strategy contract then determines some important loan parameters during loan creation. Since
borrowers are not able to set any slippage parameters during calls to
DelegatedLenderVault.createLoan(), changes to these parameters that are executed after the
borrower has published their transaction but before it is executed lead to undesired effects.

This is easily possible with the default Strategy contract by just updating the interestRate
parameter. It is also possible to use any other contract as a Strategy or supply a proxy contract that is
then upgraded to a new version with different intent.

Consider the following example:

MethLab - DLV - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

1. A lender's vault allows to create loans for WBTC, with WETH as collateral.

2. The WETH price is 3,000 and the WBTC price 60,000.

3. The vault's strategy contains an intent with an interestRate of 5% and an adjustmentFactor
of 80%. Fees are 0.

4. A borrower wants to supply 20 ETH to the vault's createLoan() function. The used UI simulates
the transaction and displays that the borrower will receive a loan of 0.76 WBTC. The borrower
submits the transaction.

5. The lender sees the borrower's transaction in the mempool and instantly creates another
transaction to Strategy.setStrategy() that sets the interest rate to 30%. The transaction gets
executed before the user's transaction but after the frontend calculated the transaction details for
the user.

6. When the borrower's transaction is executed, the user now pays the higher interest rate of 30%.

Additionally, this could become an even bigger problem if the protocol contracts are deployed on a chain
that does not order transactions based on FIFO but uses a public mempool and a fee market. It is also
possible that Mantle changes from FIFO to a fee market in the future. In this case, borrowers can set up
honeypot vaults and automatically frontrun any borrower, setting the interest rate to ~99.99%.

Code partially:

Version 2In , only whitelisted strategies can be used. Note however, the problem still persists for such
strategies, if they allow for unrestricted change of their parameters. Consider the current strategy
implementation. A trusted owner could change the strategy's parameters and accidentally frontrun a loan
issuance.

Version 3In , the parameters of the strategies are controlled by a timelock therefore unexpected changes
are highly unlikely.

6.3 Approval Abuse With Reentrant Tokens
Security Low Version 1 Code Corrected

CS-MLV2-014

LoanRepayer.repayLoan() allows borrowers to repay their loan by swapping collateral tokens to
borrow tokens. For this, borrowers have to give approval of the collateral token to the LoanRepayer
contract. During repayment, the collateral tokens are optimistically sent to the borrower address, after
which the sourceCollateral() function of the LoanRepayer is called. This function then uses the
approval granted by the borrower to transfer the previously sent collateral tokens from the borrower to an
exchange.

The borrower address is requested from the Loan both in repayLoan() and sourceCollateral(). If
the collateral token executes a callback to the receiver after a transfer has occurred, the borrower is able
to call Loan.transfer() and move the loan to a new borrower address once the Loan.repay()
function transfers collateral tokens to them.

When sourceCollateral() requests the loan data, this new address is then passed as the borrower
address. This results in a safeTransferFrom() call from the new address. If it has any open
approvals to the LoanRepayer in the given collateral token, the tokens can be transferred out to the
user-supplied swapper address and thus be stolen.

Therefore, any approvals to the LoanRepayer using tokens that contain callback functionality are
unsafe.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code corrected:

Loan.transfer() is now non-reentrant.

6.4 Max Loan Amounts Are Not Enforceable
Design Low Version 1 Code Corrected

CS-MLV2-019

Lenders can set a parameter maxSingleLoanAmt in their DelegatedLenderVault that limits the
amount a single loan can reach. Borrowers can, however, always create multiple loans as the
createLoan() function is unpermissioned.

Code correct:

Max amounts are no longer enforced. They remain in the storage and interface for backwards
compatability but are always set to the maximum.

6.5 Missing Check
Design Low Version 1 Code Corrected

CS-MLV2-015

When a vault has been created with a given Strategy and the strategy has not been initialized with
setStrategy() yet, it is possible to create loans with 0 duration and an adjustmentFactor of 0.
Neither Strategy.getIntentData() nor DelegatedLenderVault.createLoan() revert in this
case.

Code corrected:

Strategy parameters are now set and checked during deployment.

6.6 Vault Pausing Functionality
Design Low Version 1 Code Corrected

CS-MLV2-018

DelegatedLenderVault exposes three different methods for disabling vaults. Lenders can:

1. Call the pause() function.

2. Call the setCollectionExpiry() function with a value smaller than the current block's
timestamp.

3. Call the setCollectionStatus() function with a false value.

These checks cover similar cases, they are therefore redundant and could be removed.

Code corrected:

The functions setCollectionExpiry() and setCollectionStatus() have been removed.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Code Duplication
Informational Version 1

CS-MLV2-003

DelegatedLenderVault._matchBorrowParams() contains logic that could be safely replaced by
calling the intent() function instead as long as there is no reason why the additional custom errors
should not be replicated in the intent() function.

7.2 Gas Optimizations
Informational Version 1

CS-MLV2-004

The following parts of the code can be optimized for gas efficiency:

1. registry in Loan and DelegatedLenderVault is stored in storage. The value can not be
changed later-on and is the same across all clones deployed with a given registry contract. It can
therefore be defined as immutable and set during deployment of the implementation contracts.

2. IntentCollection packing can be improved by placing the isEnabled boolean behind the
addresses.

3. In general, some storage variable sizes can be decreased. For example, a variable holding a
timestamp does not require full 256 bits of storage.

4. PythOracle.forcePythPriceUpdate() could be used to update the prices of two feeds at the
same time since getting an oracle observation always involves two feeds at a time. Otherwise, the
function is redundant as the price update can also be performed directly on the Pyth contract.

5. The conversion operations for confidence and price in PythWrapper.isPriceInvalid() are
not necessary as the skew is merely a ratio of the two values and both are already in the same
format. The additional checks are also performed in getPriceInDenom() so it would suffice to
just check if the confidence is negative.

6. oracle, collToken and borrowToken in Strategy can be defined as immutable.

7. The call to safeDecreaseAllowance() in LoanCreator.createLoan() can be safely
replaced by safeApprove(0), omitting two calls to allowance().

8. LoanCreator.sourceCollateral() checks that the vault equals msg.sender. However,
vault is set arbitrarily and never used in the call which means that the check is redundant.

9. LoanRepayer.sourceCollateral() checks that lrp.loan == msg.sender and then calls
ILoan(lrp.loan).loanData(). However, ILoan(msg.sender).loanData() could be
called directly.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7.3 Implementations Not Initialized
Informational Version 1

CS-MLV2-005

The implementation contracts of DelegatedLenderVault and Loan are not automatically initialized,
allowing third party users to set storage variables.

7.4 Incorrect Documentation
Informational Version 1

CS-MLV2-006

NatSpec of pauseVault() and unpauseVault() in DelegatedLenderVault mentions that the
functions can be called by pause / unpause guardian roles. This is, however, incorrect, as no such roles
exist.

7.5 Misleading Naming
Informational Version 1

CS-MLV2-007

LoanCreator.executeLoans() does not, in fact, execute loans.

7.6 Missing Event Indexes
Informational Version 1

CS-MLV2-008

The following event fields could benefit from indexation:

1. CreateLoan.borrower in DelegatedLenderVault.

2. Withdraw.token in DelegatedLenderVault.

3. LoanCreated.loan in LoanCreator.

4. LoanRepayed.loan in LoanRepayer.

It is noticeable that indexes are not set consistently. For example, WithdrawFees.token in
RegistryV2 is indexed while Withdraw.token in DelegatedLenderVault is not.

7.7 Missing Events
Informational Version 1 Code Partially Corrected

CS-MLV2-013

Some state-changing functions do not emit events. This can be problematic for off-chain applications
trying to notice state changes. Some examples include:

1. DelegatedLenderVault.initialize().

2. DelegatedLenderVault.setCollectionExpiry().

3. DelegatedLenderVault.setMinMaxLoanAmt().

4. DelegatedLenderVault.setCollectionStatus().

MethLab - DLV - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

5. Loan.initialize().

6. Strategy.setStrategy().

7. Strategy.setOperationalParams().

8. PythWrapper.initFeed().

9. PythWrapper.updateFeedMaxSkew().

10. PythWrapper.updateFeedTimeTolerance().

Code partially corrected:

Missing events (and additional events for newly introduced functions) have been added to the Strategy
contract. The remaining events mentioned above are still missing.

7.8 Positive Pyth Exponents
Informational Version 1

CS-MLV2-009

PythUtilsExtra.convertToUint() reverts when the exponent of a Pyth feed is greater than 0.
While currently no Pyth feeds contain such exponents, the Pyth team does not rule out that such feeds
might be made available in the future.

7.9 Pyth Prices in Future
Informational Version 1

CS-MLV2-010

Since timestamps for Pyth oracle prices are not generated on-chain, it is generally possible that a
timestamp of a price feed is further in the future than block.timestamp. It is best-practice amongst
pull-based oracle providers such as Pyth or RedStone to reject prices that are too far in the future.
PythWrapper.isPriceValid currently does not check for such cases.

7.10 Reverting Oracle Observations
Informational Version 1

CS-MLV2-011

PythWrapper.getPrice() returns a boolean indicating that something is wrong with the price feed
(e.g., the price is stale). This works, however, not in all cases. During the call, isPriceInvalid() and
getPriceInDenom() perform additional checks during unit conversions using the library function
PythUtilsExtra.convertToUint(). This function reverts, for example, when a negative price is
returned.

7.11 Typographical Errors
Informational Version 1

CS-MLV2-012

The following typographical errors have been found in the code during this review:

MethLab - DLV - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

1. DelegatedLenderVault contains the following comment: "Integratoor's Getters".

2. LoanCreator.sourceCollateral() contains the following comment: "and it we swap only the
amount required".

3. The event LoanRepayed in LoanRepayer contains the term "repayed".

MethLab - DLV - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Denomination Asset of Price Feeds
Note Version 1

PythWrapper calculates the relative price of two assets by quering the individual prices of the assets
against some denomination. As the owner initializes the feeds, they are responsible to make sure that all
the price feeds indeed report the price feed against the same denomination asset. While Pyth currently
only offers feeds in USD denomination, this might change in the future.

8.2 Misleading Interest Rate Calculation
Note Version 1

Lenders define an interestRate in their Strategy that is then used to calculate the premium for a
given loan. It is, however, misleading as it does not define the actual interest rate of the loan but the
share of the premium in the total amount that has to be repaid:

uint256 totalPremium = (loanAmount * interestRate) / INTEREST_BASE_UNIT;

...

borrowAmtReceived = loanAmount - totalPremium;

If, for example, the interest rate is set to 50%, the borrower has an effective interest rate of 100%.

8.3 Pyth Oracle Time Tolerances
Note Version 1

PythWrapper allows to set a time tolerance for each individual price feed. Prices are accepted only if
the price of a feed has been observed in the given time interval. Since users can update the price feed
themselves, it is important to keep the time tolerance parameters tight, especially because prices in the
PythWrapper are always a combination of two feeds.

Consider the following example:

1. A vault does not charge premium and fees (for simplification of the example).

2. The vault's strategy has an adjustmentFactor of 95%.

3. The Pyth feeds for WETH and WBTC are initialized with a time tolerance of 2 hours.

4. Both feeds are not regularly updated on the given chain. Their last update occurred several hours
ago.

5. A user creates a loan for WBTC, supplying WETH as collateral.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6. The user first has to update both price feeds to a new version. They are able to choose any of the
published Pyth prices as soon as they are newer than the last published ones and not older than
the 2 hour time tolerance.

• The current spot price of WETH is 3,000. In the last two hours, the price fluctuated with a
high of 3,200.

• The current spot price of WBTC is 60,000. In the last two hours, the price fluctuated with a
low of 57,000.

7. The user now chooses the most preferential prices to update the feed and then commences with
creating their loan.

8. The oracle computes a price of ~0.05614. Adjusted by the adjustment factor, the strike price is
~0.05334.

9. For 20 supplied WETH, the user can borrow ~1.06666 WBTC.

10. The 20 WETH have been bought for exactly 1 BTC on the spot market. The user now made an
instant profit of ~0.06666 BTC.

As long as there is enough volatility in the assets, this is possible even if WBTC and WETH followed the
same curve during the last 2 hours as the user is not required to pick both prices at the same point in
time.

8.4 Repayment Rounding Errors
Note Version 1

The amount of collateral that is returned after a repayment in Loan is calculated in the function
previewRepay(). Due to the way, the amount is calculated, very small repayments can result in not
collateral being returned at all:

(loanData.collAmt * repayAmt) / loanData.borrowAmt)

If there is a discrepancy between the decimals of the collateral and the borrow token, minimal
repayments will lead to a result of 0 in the shown calculation if the repay amount is noticeably lower than
1 full token. Users are, however, assumed to not repay such low amounts.

8.5 Unsupported ERC-20 Tokens
Note Version 1

The system doesn't apply any restrictions on what tokens are used as collateral and principal tokens.
However, it is important to emphasize that tokens with rebases should not be used as collateral.
Moreover, tokens with negative rebases, fees on transfer or callbacks should not be used as either
collateral or principal. Lenders should be mindful of the tokens they choose to allow in their intents.

MethLab - DLV - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 RegistryV2
	2.2.2 DelegatedLenderVault
	2.2.3 Loan
	2.2.4 Strategy
	2.2.5 PythWrapper
	2.2.6 LoanCreator
	2.2.7 LoanRepayer
	2.2.8 Changes in version 2
	2.2.9 Changes in version 3
	2.2.10 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Few Decimals for the Denomination Asset
	5.2 Sending Arbitrary ETH in forcePythPriceUpdate

	6 Resolved Findings
	6.1 Wrong Implementation
	6.2 Loan Creation Frontrunning
	6.3 Approval Abuse With Reentrant Tokens
	6.4 Max Loan Amounts Are Not Enforceable
	6.5 Missing Check
	6.6 Vault Pausing Functionality

	7 Informational
	7.1 Code Duplication
	7.2 Gas Optimizations
	7.3 Implementations Not Initialized
	7.4 Incorrect Documentation
	7.5 Misleading Naming
	7.6 Missing Event Indexes
	7.7 Missing Events
	7.8 Positive Pyth Exponents
	7.9 Pyth Prices in Future
	7.10 Reverting Oracle Observations
	7.11 Typographical Errors

	8 Notes
	8.1 Denomination Asset of Price Feeds
	8.2 Misleading Interest Rate Calculation
	8.3 Pyth Oracle Time Tolerances
	8.4 Repayment Rounding Errors
	8.5 Unsupported ERC-20 Tokens

